

Bericht

Differenzialblutbild H3

MQ 2016-1

Impressum

Der Mythic 18 wurde von der Firma Polymed, der ABX Micros CRP 200 von der Firma Axonlab und der XP-300 von der Firma Sysmex zur Verfügung gestellt. Die Messungen dieser drei Geräte wurden durch Mitarbeiter von MQ durchgeführt.

Die Befunde der Geräte XE-5000, ADVA 2120 und des mikroskopischen Blutbildes wurden vom Zentrallabor des Medizinbereichs Diagnostik HAD der Klinik für Hämatologie des Universitätsspitals Zürich erstellt. Das Labor ist nach ISO/IEC 17025 akkreditiertiert (STS 445). Verantwortlicher Leiter ist Dr. J.-D. Studt, Klinikdirektor Prof. Dr. med. M.G. Manz.

www.haematologie.usz.ch

Informationen zu allen Analysen die am Universitätsspitals Zürich angeboten werden finden Sie unter: www.uzl.usz.ch

(c) 2016 Verein für medizinische Qualitätskontrolle

MQ 2016-1 Seite 2/25

Inhaltsverzeichnis

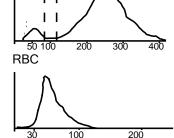
1	PRUBE A	4
1.1	ABX Micros	4
1.2	Mythic	5
1.3	Sysmex XP300	6
1.4	Sysmex XE-5000	7
1.5	ADVIA 2120	9
1.6	Blutbild mikroskopisch	11
1.7	Resultate der Ringversuchsteilnehmer	13
1.8	Qualab Codes	14
2	PROBE B	15
2.1	ABX Micros	15
2.2	Mythic	16
2.3	Sysmex XP300	17
2.4	Sysmex XE-5000	18
2.5	ADVIA 2120	20
2.6	Blutbild mikroskopisch	22
2.7	Qualab Codes	25

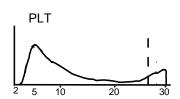
MQ 2016-1 Seite 3/25

1 Probe A

1.1 ABX Micros

Befund MQ 2016-1 H3A


Frau, 59 Jahre

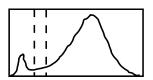

WBC:	16.9	Н	10 ⁹ /L	MCV:	70.2	L	fL
RBC:	7.28	Н	10 ¹² /L	MCH:	20.3	L	pg
HGB:	147		g/L	MCHC:	288	L	g/l
HCT:	511	Н	L/L	RDW:	18.8	Н	%
PLT:	348		10 ⁹ /L	MPV:	8.0		fL
PCT:	277		10 ⁻² L/L	PDW:	12.2		%

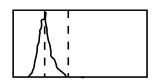
DIFF:

%LYM:	6.4	L	%	#LYM:	1.0	L	10 ⁹ /L
%MON:	1.7	L	%	#MON:	0.2	L	10 ⁹ /L
%GRA:	91.9	Н	%	#GRA:	15.7	Н	10 ⁹ /I

WBC

MQ 2016-1 Seite 4/25

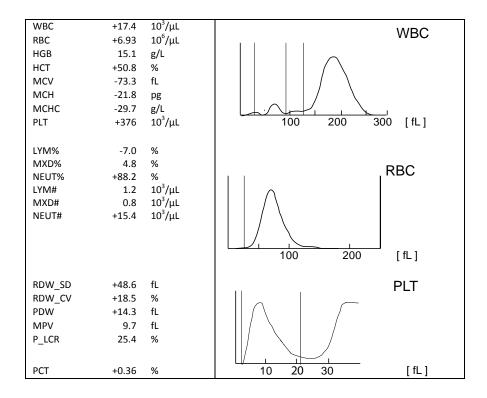

1.2 Mythic



Befund MQ 2016-1, H3A

Frau, 59 Jahre

WBC	17.3	Н	10^9/l	3.5	/	10.0
LYM	1.3		10^9/l	1.2	/	3.2
MON	0.7		10^9/I	0.1	/	1.0
GRA	15.3	Н	10^9/I	1.2	/	6.8
LYM%	7.7	L	%	17.0	/	48.0
MON%	3.8		%	2.0	/	10.0
GRA%	88.5	Н	%	43.0	/	76.0
RBC	6.85	h	10^12/l	4.00	/	5.70
HGB	145		g/l	140	/	180
HCT	0.456		I/I	0.420	/	0.540
MCV	66.6	L	fl	80.0	/	100.0
MCH	21.2	L	pg	26.0	/	34.0
MCHC	318		g/l	310	/	365
RDW	17.5	h	%	10.0	/	16.0
PLT	262		10^9/I	150	/	400
MPV	8.3	I	fl	7.0	/	11.0
PCT	0.217		cl/l	0.100	/	0.500
PDW	16.9		%	10.0	/	18.0



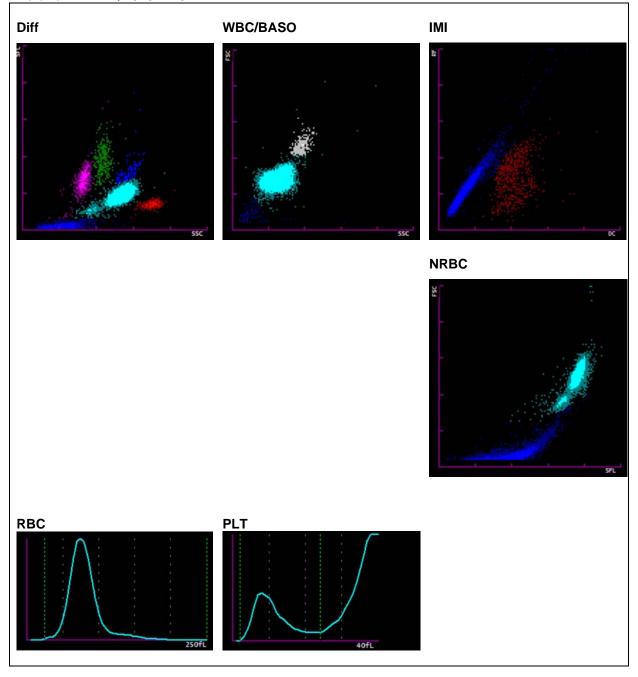
MQ 2016-1 Seite 5/25

1.3 Sysmex XP300

Befund MQ 2016-1 H3A Frau, 59 Jahre

MQ 2016-1 Seite 6/25

1.4 Sysmex XE-5000


Befund HAD MQ 2016-1 H3A

Frau, 59 Jahre

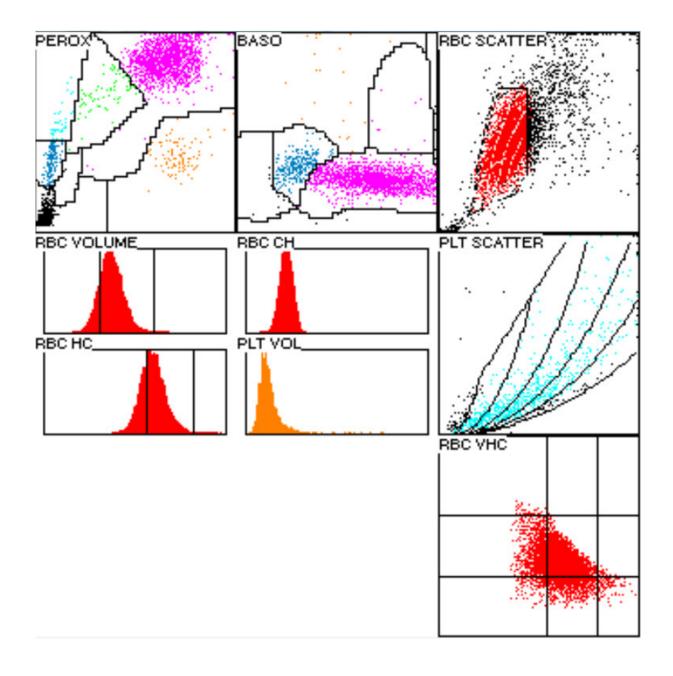
Untersuchungen		Resultat	Einheit	Referenzwert
Blutstatus				
<u>Hämoglobin</u>		152	g/l	117-153
<u>Hämatokrit</u>		0.508	I/I	0.350-0.460
Erythrozyten		6.92	T/I	3.9-5.2
MCV	*	73.4	fl	80-100
MCH	*	22.0	pg	26-34
MCHC	*	299	g/l	310-360
RDW	*	19.2	%	11.0-14.8
<u>Thrombozyten</u>		344	G/I	143-400
<u>Leukozyten</u>	*	18.03	G/I	3.0-9.6
Blutbild				
<u>Neutrophile</u>	*	15.71	G/I	1.40-8.00
Monozyten		0.40	G/I	0.16-0.95
Eosinophile		0.50	G/I	0.00-0.70
Basophile	*	0.24	G/I	0.00-0.15
Lymphozyten	*	1.18	G/I	1.50-4.00
IG abs.	*	0.16	G/I	0.00-0.03
IG %	*	0.9	%	0.0-0.5
NRBC abs.		0.00	G/I	
NRBC		0.0	/100 Lc	

MQ 2016-1 Seite 7/25

Befund HAD MQ 2016-1 H3A

MQ 2016-1 Seite 8/25

1.5 ADVIA 2120



Befund HAD MQ 2016-1 H3A

Frau, 59 Jahre

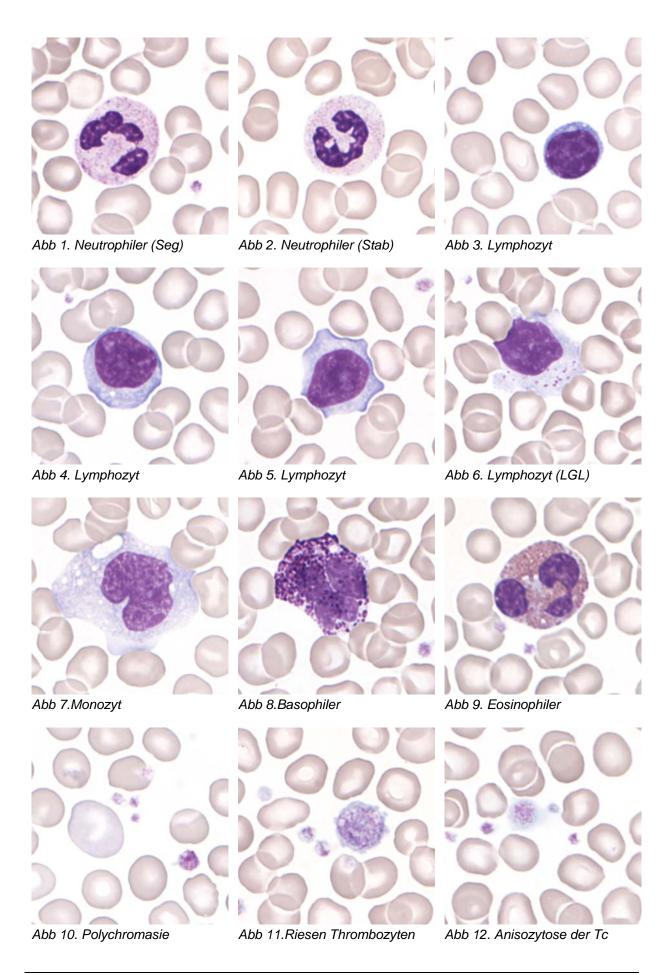
Untersuchungen		Resultat	Einheit	Referenzwert
Blutstatus				
Hämoglobin		148	g/l	117-153
Hämatokrit		0.517	I/I	0.350-0.460
Erythrozyten		7.04	T/I	3.9-5.2
MCV	*	73.4	fl	80-100
MCH	*	20.9	pg	26-34
MCHC		285	g/l	310-360
Mikrozyten	*	14.8	%	0-2.0
Makrozyten		0.1	%	0-2.0
Hypochrome Ec	*	28.9	%	0-2.0
Hyperchrome Ec		0.4	%	0-2.0
RDW	*	17.8	%	11.0-14.8
Thrombozyten		372	G/I	143-400
Vd. L-SHIFT		+	+	Keine (0)
Leukozyten	*	17.28	G/I	3.0-9.6
Blutbild				
Neutrophile	*	15.13	G/I	1.40-8.00
Monozyten		0.29	G/I	0.16-0.95
Eosinophile		0.43	G/I	0.00-0.70
Basophile		0.10	G/I	0.00-0.15
Lymphozyten	*	1.06	G/I	1.50-4.00
LUC		1.5	%	0.0-4.0

MQ 2016-1 Seite 9/25

MQ 2016-1 Seite 10/25

1.6 Blutbild mikroskopisch

Befund HAD MQ 2016-1 H3A


Frau, 59 Jahre

Frau, 59 Janie				
Untersuchungen		Resultat	Einheit	Referenzwert
Blutbild				
Neutrophile gesamt	*	15.03	G/I	1.40-8.00
Monozyten		0.26	G/I	0.16-0.95
Eosinophile		0.35	G/I	0.00-0.70
Basophile	*	0.26	G/I	0.00-0.15
Lymphozyten	*	1.21	G/I	1.50-4.00
Neutrophile gesamt	*	87.0	%	40.0-74.0
Neutrophile Stabker.	*	23.0	%	0.0-20.0
Neutrophile Segmentk.	*	64.0	%	30.0-50.0
Monozyten	*	1.5	%	3.4-9.0
Eosinophile		2.0	%	0.0-7.0
Basophile		1.5	%	0.0-1.5
Lymphozyten	*	7.0	%	19.0-48.0
Plasmazellen		0.0	%	0-0.5
Blasten		0.0	%	0
Promyelozyten		0.0	%	0
Myelozyten	*	0.5	%	0
Metamyelozyten	*	0.5	%	0
Erythroblasten		0.0	/100 Lc	

Kommentar

Leukozytose mit absoluter Neutrophilie. Die neutrophilen Granulozyten weisen eine feine, bis leicht vergröberte zytoplasmatische Granulation auf, wenige mit feinen basophilen Schlieren und feinsten Plasmavakuolen. Ausschwemmung einzelner myeloischer Vorstufen bis hin zu 0,5% Myelozyten. Absolute Lymphopenie. Deutliche Amnioszytose der Thrombozyten, bei Durchsicht wenige Riesenformen fassbar. Im roten Blutbild zeigt sich eine Hypochromasie, daneben eine deutliche Anisozytose mit vielen Mikrozyten und wenigen Makrozyten, diskrete Polychromasie, leichte Poikilozytose mit wenigen Stomatozyten und Ovalozyten. Keine erythrozytären Einschlüsse fassbar. K. Schreiber / PD. Dr. St. Balabanov

MQ 2016-1 Seite 11/25

MQ 2016-1 Seite 12/25

1.7 Resultate der Ringversuchsteilnehmer

Leukozyten Differenzierung H3-A

0	1-4	5-9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	>79
1	8	38	109	114*	37	11	8	0	2	2
2	1	1	1	2	9	17	71	105*	97	24
28	277*	22	3							
93	234*	3								
54	258*	18								
0	24	214*	87	5						
327*	2	1								
327*	3									
327*	3									
329*	1									
325*	5									
310*	20									
322*	7	0	1							
312*	15	3								
	1 2 28 93 54 0 327* 327* 327* 329* 325* 310* 322*	1 8 2 1 28 277* 93 234* 54 258* 0 24 327* 2 327* 3 327* 3 329* 1 325* 5 310* 20 322* 7	1 8 38 2 1 1 28 277* 22 93 234* 3 54 258* 18 0 24 214* 327* 2 1 327* 3 327* 3 329* 1 325* 5 310* 20 322* 7 0	1 8 38 109 2 1 1 1 28 277* 22 3 93 234* 3 54 258* 18 0 24 214* 87 327* 2 1 327* 3 327* 3 329* 1 325* 5 310* 20 322* 7 0 1	1 8 38 109 114* 2 1 1 1 2 28 277* 22 3 93 234* 3 54 258* 18 0 24 214* 87 5 327* 2 1 327* 3 329* 1 325* 5 310* 20 322* 7 0 1	1 8 38 109 114* 37 2 1 1 1 2 9 28 277* 22 3 93 234* 3 54 258* 18 0 24 214* 87 5 327* 2 1 327* 3 329* 1 325* 5 310* 20 322* 7 0 1	1 8 38 109 114* 37 11 2 1 1 1 2 9 17 28 277* 22 3 93 234* 3 54 258* 18 0 24 214* 87 5 327* 2 1 327* 3 329* 1 325* 5 310* 20 322* 7 0 1	1 8 38 109 114* 37 11 8 2 1 1 1 2 9 17 71 28 277* 22 3 93 234* 3 54 258* 18 0 24 214* 87 5 327* 2 1 327* 3 327* 3 329* 1 325* 5 310* 20 20 322* 7 0 1	1 8 38 109 114* 37 11 8 0 2 1 1 1 2 9 17 71 105* 28 277* 22 3 93 234* 3 54 258* 18 0 24 214* 87 5 327* 2 1 327* 3 329* 1 325* 5 310* 20 322* 7 0 1	1 8 38 109 114* 37 11 8 0 2 2 1 1 1 2 9 17 71 105* 97 28 277* 22 3 93 234* 3 54 258* 18 0 24 214* 87 5 327* 2 1 327* 3 329* 1 325* 5 310* 20 322* 7 0 1

Beurteilung H3-A

Kern-Hypersegmentierung 25 10 2 Hypochromasie 72* 37 Pelger-Hüet Abnormalität 9 2 Polychromasie 136* 49 Vergröberte Granulation 110* 48 6 Anisozytose 125 109* Basophile Schlieren 34 4 1 Mikrozyten 106 63* Vakuolen 35 5 Makrozyten 75* 19
Vergröberte Granulation 110* 48 6 Anisozytose 125 109* Basophile Schlieren 34 4 1 Mikrozyten 106 63*
Basophile Schlieren 34 4 1 Mikrozyten 106 63*
Vakuolen 35 5 Makrozyten 75* 19
Atypische Lymph, reaktiv 35 3 Megalozyten 15 2
Atypische Lymph, neoplast. 6 1 Poikilozytose 93* 10
Andere Ovalozyten 117* 7
Target-Zellen 16
Akanthozyten 10
<i>Anisozytose</i> 111 77* 9 <i>Echinozyten</i> 12 1
Megakaryozytenkernreste 22 6 0 Sichel-Zellen 1 1
Granulation 32 8 1 Fragmentozyten 5
Andere Sphärozyten (Kugelzellen) 8 2
Stomatozyten 61* 9
Basophile Punktierung 7 1
Howell-Jolly 5 2
Pappenheim
Andere

Kommentar

Der Ausstrich stammt von einer Patientin mit Polycythaemia vera

MQ 2016-1 Seite 13/25

1.8 Qualab Codes

Von den Teilnehmern wurden folgende Codes angegeben: (Fett gedruckt sind die erwarteten Codes)

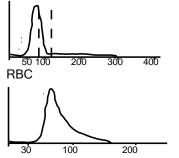
Code	Text	Anzahl
2	Linksverschiebung	113
30	Pathologischer Befund, wird weitergeschickt	109
15	Polychromasie	103
12	Mikrozyten	102
31	Pathologischer Befund	95
9	Riesenplättchen	65
14	Hypochromie	64
4	Toxische Veränderung der neutrophilen	59
29	Normaler Befund	57
13	Makrozyten	37
	Stomatozyten	33
	Elliptozyten/Ovalozyten	27
16	Poikilozytose	25
1	Kern-Hypersegmentierung	17
8	Leukozyten, andere:	15
5	Atypische Lymphozyten, vermutlich reaktiv	14
27	Erythrozyten, andere:	12
11	Thrombozyten, andere:	10
	Geldrollenbildung	10
19	Targetzellen	8
10	Plättchenaggregate	4
26	Tränenformen	4
3	Pelger-Hüet Abnormalität	3
25	Basophile Punktierung	3
20	Fragmentozyten	2
21	Sphärozyten/Mikrosphärozyten	2
24	Howell-Jolly Körperchen	2
23	Erythrozytenagglutination	1
99	Total	323

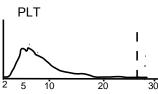
MQ 2016-1 Seite 14/25

2 Probe B

2.1 ABX Micros

Befund MQ 2016-1 H3B

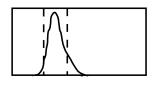

Mann.	50 .	Jahre


WBC:	36.9	Н	10 ⁹ /L	MCV:	94.8	fL
RBC:	5.28		10 ¹² /L	MCH:	31.9	pg
HGB:	169	Н	g/L	MCHC:	337	g/L
HCT:	0.501	L	L/L	RDW:	14.7	%
PLT:	164		10 ⁹ /L	MPV:	7.1	fL
PCT:	116		10 ⁻² L/L	PDW:	14.6	%

DIFF:

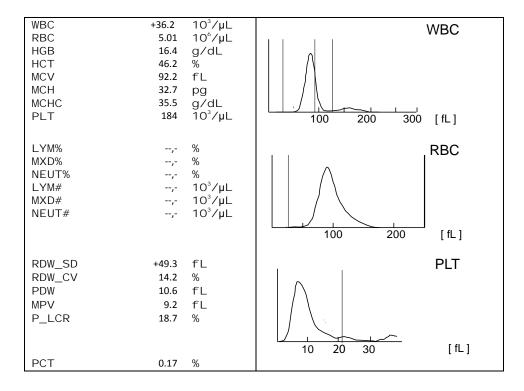
%LYM:	49.4	Н	%	#LYM:	18.2	Н	10°/L
%MON:	30.3	Н	%	#MON:	11.1	Н	10 ⁹ /L
%GRA:	20.3	L	%	#GRA:	7.6	Н	10 ⁹ /L

MQ 2016-1 Seite 15/25


2.2 Mythic

Befund MQ 2016-1 H3B

Mann, 50 Jahre									
WBC	36.0	Н	10^9/l	3.5	/	10.0			
LYM	26.6		10^9/l	1.2	/	3.2			
MON	3.1		10^9/l	0.1	/	1.0			
GRA	6.3	Н	10^9/I	1.2	/	6.8			
LYM%	73.9		%	17.0	/	48.0			
MON%	8.6		%	2.0	/	10.0			
GRA%	17.5		%	43.0	/	76.0			
RBC	4.97	1	10^12/l	4.00	/	5.70			
HGB	160	1	g/l	140	/	180			
HCT	0.473	1	I/I	0.420	/	0.540			
MCV	95.2		fl	80.0	/	100.0			
MCH	32.2		pg	26.0	/	34.0			
MCHC	338		g/l	310	/	365			
RDW	14.6		%	10.0	/	16.0			
PLT	153	1	10^9/l	150	/	400			
MPV	7.7		fl	7.0	/	11.0			
PCT	0.118	1	cl/l	0.100	/	0.500			
PDW	14.4		%	10.0	/	18.0			


MQ 2016-1 Seite 16/25

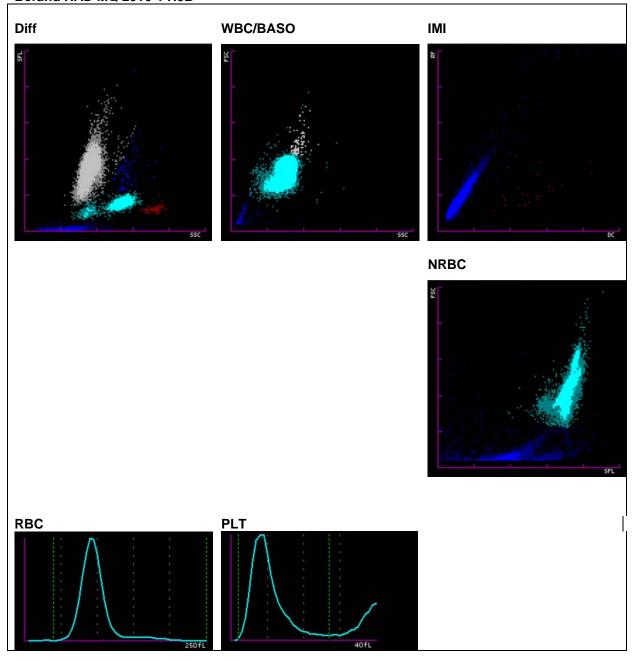
2.3 Sysmex XP300

Befund MQ 2016-1 H3B

Mann, 50 Jahre

MQ 2016-1 Seite 17/25

2.4 Sysmex XE-5000


Befund HAD MQ 2016-1 H3B

Mann, 50 Jahre

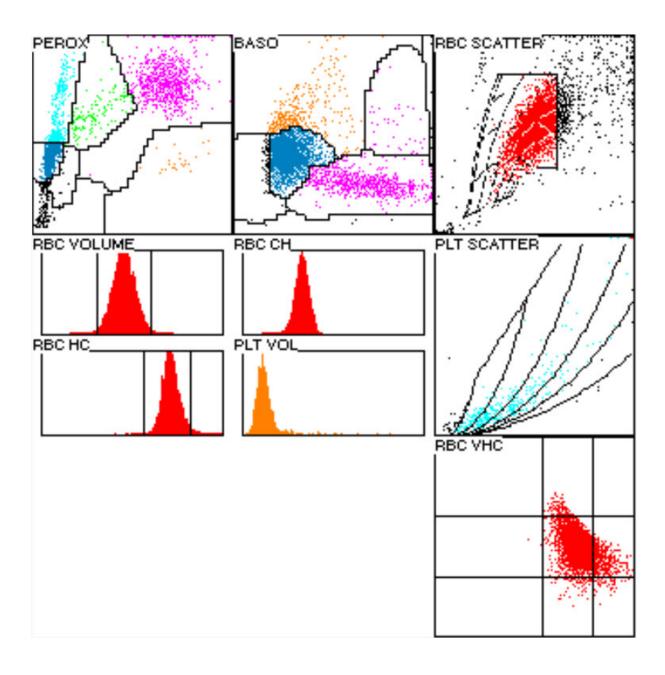
Untersuchungen		Resultat	Einheit	Referenzwert
Blutstatus				
<u>Hämoglobin</u>		168	g/l	134-170
<u>Hämatokrit</u>		0.474	I/I	0.400-0.500
Erythrozyten		5.17	T/I	4.2-5.7
MCV		91.7	fl	80-100
MCH		32.5	pg	26-34
MCHC		354	g/l	310-360
RDW		14.0	%	11.0-14.8
<u>Thrombozyten</u>		158	G/I	143-400
<u>Leukozyten</u>	*	37.25	G/I	3.0-9.6
Blutbild				
<u>Neutrophile</u>		4.72	G/I	1.40-8.00
Monozyten		0.78	G/I	0.16-0.95
Eosinophile		0.12	G/I	0.00-0.70
Basophile		0.07	G/I	0.00-0.15
Lymphozyten	*	31.56	G/I	1.50-4.00
IG abs.		0.09	G/I	0.00-0.03
IG %		0.2	%	0.0-0.5
NRBC abs.		0.00	G/I	
NRBC		0.0	/100 Lc	

MQ 2016-1 Seite 18/25

Befund HAD MQ 2016-1 H3B

MQ 2016-1 Seite 19/25

2.5 ADVIA 2120



Befund HAD MQ 2016-1 H3B

Mann, 50 Jahre

Untersuchungen		Resultat	Einheit	Referenzwert
Blutstatus				
<u>Hämoglobin</u>		159	g/l	134-170
<u>Hämatokrit</u>		0.459	I/I	0.400-0.500
Erythrozyten		5.06	T/I	4.2-5.7
MCV		90.8	fl	80-100
MCH		31.5	pg	26-34
MCHC		347	g/l	310-360
Mikrozyten		0.8	%	0-2.0
Makrozyten		0.9	%	0-2.0
Hypochrome Ec		0.1	%	0-2.0
Hyperchrome Ec	*	2.5	%	0-2.0
RDW		13.9	%	11.0-0-14.8
Thrombozyten		161	G/I	143-400
Vd. L-SHIFT		0	+	Keine (0)
<u>Leukozyten</u>	*	38.04	G/I	3.0-9.6
Blutbild				
<u>Neutrophile</u>		5.02	G/I	1.40-8.00
Monozyten		0.71	G/I	0.16-0.95
Eosinophile		0.16	G/I	0.00-0.70
Basophile	*	2.25	G/I	0.00-0.15
Lymphozyten	*	27.24	G/I	1.50-4.00
LUC	*	12.9	%	0.0-4.0

MQ 2016-1 Seite 20/25

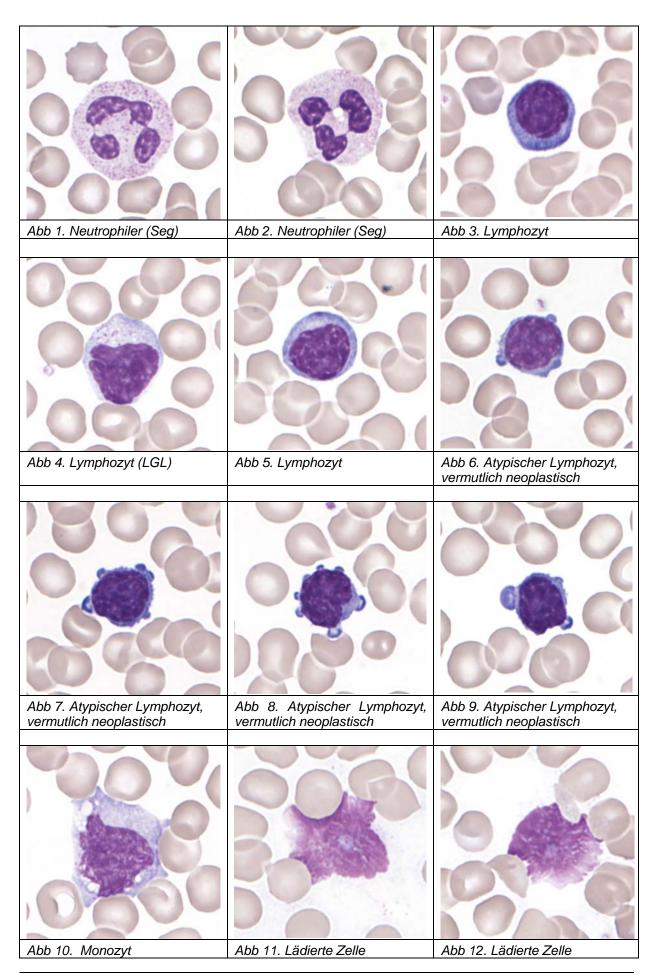
MQ 2016-1 Seite 21/25

2.6 Blutbild mikroskopisch

Befund HAD MQ 2016-1 H3B

Mann, 50 Jahre

Untersuchungen		Resultat	Einheit	Referenzwert
Blutbild				
Neutrophile gesamt		5.71	G/I	1.40-8.00
Monozyten		0.38	G/I	0.16-0.95
Eosinophile		0.00	G/I	0.00-0.70
Basophile	*	0.00	G/I	0.00-0.15
Lymphozyten	*	31.95	G/I	1.50-4.00
Neutrophile gesamt	*	15.0	%	40.0-74.0
Neutrophile Stabker.		1.0	%	0.0-20.0
Neutrophile Segmentk.	*	14.0	%	30.0-50.0
Monozyten		1.0	%	3.4-9.0
Eosinophile		0.0	%	0.0-7.0
Basophile		0.0	%	0.0-1.5
Lymphozyten	*	84.0	%	19.0-48.0
Plasmazellen		0.0	%	0-0.5
Blasten		0.0	%	0
Promyelozyten		0.0	%	0
Myelozyten		0.0	%	0
Metamyelozyten		0.0	%	0
Erythroblasten		0.0	/100 Lc	


Kommentar

Rotes Blutbild normochrom und normozytär. Keine erythrozytären Einschlüsse fassbar. Leukozytose mit absoluter Lymphozytose. Die Lymphozyten sind atypisch neoplastisch. Kleine bis mittelgrosse Formen mit rundem, bis ovoidem Kern, das Kernchromatin ist dicht bis hin zu körnig, gut 1/3 mit angedeutetem bis deutlichem Nukleolus, <5% mit Kerneinschnitt, der Zytoplasmasaum ist mittelbreit und dunkelbasophil. 10% der lymphatischen Zellen sind lädiert, wurden zu den Lymphozyten gezählt. Neutrophile Granulozyten mit feiner zytoplasmatischer Granulation.

Leichte Anisozytose der Thrombozyten, selten agranuläre Formen fassbar. Keine Riesenformen.

K. Schreiber / PD. Dr. St. Balabanov

MQ 2016-1 Seite 22/25

MQ 2016-1 Seite 23/25

Resultate der Ringversuchsteilnehmer

Leukozyten Differenzierung H3-B

	0	1-4	5-9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	>79
Stabkernige Neutrophile	126	190*	4	7	2						
Segmentkernige Neutr.	4	11	133	179*	1			1			
Eosinophile	217*	111	1								
Basophile	293*	35									1
Monozyten	60	244*	21	3							1
Lymphozyten	5	9	2	1	5		4	4	2	86*	211
Plasmazellen	320*	5	1	2				1			
Blasten	298*	10	3	2		4	1	3	1	1	6
Promyelozyten	323*	3	1	2							
Myelozyten	321*	4	1	1							2
Metamyelozyten	324*	5									
Erythroblasten	327*	2									
Unbekannte	312*	9	2	1		1				2	2
Lädierte Zellen	188	43	66*	32							

Beurteilung H3-B

	leicht	mittel	stark		leicht	mittel	stark
Kern-Hypersegmentierung	15	2		Hypochromasie	23	6	1
Pelger-Hüet Abnormalität				Polychromasie	72	5	
Vergröberte Granulation	47	17	3	Anisozytose	154	33	
Basophile Schlieren	3	2		Mikrozyten	70	6	
Vakuolen	28	5	2	Makrozyten	61	6	
Atypische Lymph, reaktiv	31	25	24	Megalozyten	4	1	
Atypische Lymph, neoplast.	24	39	65*	Poikilozytose	74	5	
Andere				Ovalozyten	25	5	
				Target-Zellen	44	4	
				Akanthozyten	18	1	
Anisozytose	61*	13	1	Echinozyten	12		1
Megakaryozytenkernreste	6			Sichel-Zellen	1		
Granulation	14	2		Fragmentozyten	13	2	
Andere				Sphärozyten (Kugelzellen)	17	1	
				Stomatozyten	18	2	
				Basophile Punktierung	8	1	
				Howell-Jolly			
				Pappenheim	2		
				Andere	3		

Kommentar

Der Ausstrich stammt von einem Patienten mit einer Prolymphozytenleukämie (T-PLL).

MQ 2016-1 Seite 24/25

2.7 Qualab Codes

Von den Teilnehmern wurden folgende Codes angegeben: (Fett gedruckt sind die erwarteten Codes)

Code		Text	Anzahl
	30	Pathologischer Befund, wird weitergeschickt Atypische Lymphozyten, vermutlich	247
	6	neoplastisch	140
	5	Atypische Lymphozyten, vermutlich reaktiv	70
		Pathologischer Befund	59
		Leukozyten, andere:	43
		Polychromasie	34
		Mikrozyten	30
		Poikilozytose	25
		Makrozyten	22
		Targetzellen	19
		Toxische Veränderung der neutrophilen	16
		Erythrozyten, andere:	11
		Hypochromie	10
		Elliptozyten/Ovalozyten	9
		Geldrollenbildung	9
		Kern-Hypersegmentierung	8
		Thrombozyten, andere:	8
		Stomatozyten	8
		Sphärozyten/Mikrosphärozyten	7
		Riesenplättchen	6
		Fragmentozyten	5
	_	Tränenformen	5
		Basophile Punktierung	3
		Linksverschiebung	2
		Auerstäbchen	2
		Plättchenaggregate	1
		Erythrozytenagglutination	1
		Normaler Befund	1
	99	Total	321

Seite 25/25 MQ 2016-1